3.8.43 \(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [743]

3.8.43.1 Optimal result
3.8.43.2 Mathematica [B] (warning: unable to verify)
3.8.43.3 Rubi [A] (verified)
3.8.43.4 Maple [B] (verified)
3.8.43.5 Fricas [F]
3.8.43.6 Sympy [F]
3.8.43.7 Maxima [F(-1)]
3.8.43.8 Giac [F]
3.8.43.9 Mupad [F(-1)]

3.8.43.1 Optimal result

Integrand size = 35, antiderivative size = 327 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 a \left (3 A b^2+8 a^2 C-5 b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} d}+\frac {2 \left (3 A b^2+\left (8 a^2+6 a b+b^2\right ) C\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} d}+\frac {2 a \left (A b^2+a^2 C\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 d} \]

output
2/3*a*(3*A*b^2+8*C*a^2-5*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2 
)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+s 
ec(d*x+c))/(a-b))^(1/2)/b^4/d/(a+b)^(1/2)+2/3*(3*A*b^2+(8*a^2+6*a*b+b^2)*C 
)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1 
/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/ 
(a+b)^(1/2)+2*a*(A*b^2+C*a^2)*tan(d*x+c)/b^2/(a^2-b^2)/d/(a+b*sec(d*x+c))^ 
(1/2)+2/3*C*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d
 
3.8.43.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3312\) vs. \(2(327)=654\).

Time = 27.16 (sec) , antiderivative size = 3312, normalized size of antiderivative = 10.13 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Result too large to show} \]

input
Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/ 
2),x]
 
output
((b + a*Cos[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((4*a*(3*A*b^2 + 8*a^2*C - 
5*b^2*C)*Sin[c + d*x])/(3*b^3*(-a^2 + b^2)) - (4*(a*A*b^2*Sin[c + d*x] + a 
^3*C*Sin[c + d*x]))/(b^2*(-a^2 + b^2)*(b + a*Cos[c + d*x])) + (4*C*Tan[c + 
 d*x])/(3*b^2)))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(3 
/2)) + (4*(b + a*Cos[c + d*x])*((-2*a*A)/((-a^2 + b^2)*Sqrt[b + a*Cos[c + 
d*x]]*Sqrt[Sec[c + d*x]]) + (10*a*C)/(3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d* 
x]]*Sqrt[Sec[c + d*x]]) - (16*a^3*C)/(3*b^2*(-a^2 + b^2)*Sqrt[b + a*Cos[c 
+ d*x]]*Sqrt[Sec[c + d*x]]) - (2*a^2*A*Sqrt[Sec[c + d*x]])/(b*(-a^2 + b^2) 
*Sqrt[b + a*Cos[c + d*x]]) + (2*A*b*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)*Sqrt 
[b + a*Cos[c + d*x]]) - (16*a^4*C*Sqrt[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)* 
Sqrt[b + a*Cos[c + d*x]]) + (14*a^2*C*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2 
)*Sqrt[b + a*Cos[c + d*x]]) + (2*b*C*Sqrt[Sec[c + d*x]])/(3*(-a^2 + b^2)*S 
qrt[b + a*Cos[c + d*x]]) - (2*a^2*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/( 
b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) - (16*a^4*C*Cos[2*(c + d*x)]*Sqrt 
[Sec[c + d*x]])/(3*b^3*(-a^2 + b^2)*Sqrt[b + a*Cos[c + d*x]]) + (10*a^2*C* 
Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)*Sqrt[b + a*Cos[c + 
d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*(-2*a 
*(a + b)*(3*A*b^2 + 8*a^2*C - 5*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x] 
)]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSi 
n[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(3*A*b^2 + (8*a^2 -...
 
3.8.43.3 Rubi [A] (verified)

Time = 1.43 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.10, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4579, 27, 3042, 4570, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4579

\(\displaystyle \frac {2 \int -\frac {\sec (c+d x) \left (-b \left (a^2-b^2\right ) C \sec ^2(c+d x)+a \left (2 C a^2+A b^2-b^2 C\right ) \sec (c+d x)+b \left (C a^2+A b^2\right )\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}+\frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\sec (c+d x) \left (-b \left (a^2-b^2\right ) C \sec ^2(c+d x)+a \left (2 C a^2+A b^2-b^2 C\right ) \sec (c+d x)+b \left (C a^2+A b^2\right )\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (-b \left (a^2-b^2\right ) C \csc \left (c+d x+\frac {\pi }{2}\right )^2+a \left (2 C a^2+A b^2-b^2 C\right ) \csc \left (c+d x+\frac {\pi }{2}\right )+b \left (C a^2+A b^2\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4570

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {2 \int \frac {\sec (c+d x) \left (\left (3 A b^2+\left (2 a^2+b^2\right ) C\right ) b^2+a \left (8 C a^2+3 A b^2-5 b^2 C\right ) \sec (c+d x) b\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {\int \frac {\sec (c+d x) \left (\left (3 A b^2+\left (2 a^2+b^2\right ) C\right ) b^2+a \left (8 C a^2+3 A b^2-5 b^2 C\right ) \sec (c+d x) b\right )}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\left (3 A b^2+\left (2 a^2+b^2\right ) C\right ) b^2+a \left (8 C a^2+3 A b^2-5 b^2 C\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) b\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {a b \left (8 a^2 C+3 A b^2-5 b^2 C\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-b (a-b) \left (C \left (8 a^2+6 a b+b^2\right )+3 A b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {a b \left (8 a^2 C+3 A b^2-5 b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b (a-b) \left (C \left (8 a^2+6 a b+b^2\right )+3 A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {a b \left (8 a^2 C+3 A b^2-5 b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \left (C \left (8 a^2+6 a b+b^2\right )+3 A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\frac {-\frac {2 (a-b) \sqrt {a+b} \left (C \left (8 a^2+6 a b+b^2\right )+3 A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 a (a-b) \sqrt {a+b} \left (8 a^2 C+3 A b^2-5 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}}{3 b}-\frac {2 C \left (a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{b^2 \left (a^2-b^2\right )}\)

input
Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(2*a*(A*b^2 + a^2*C)*Tan[c + d*x])/(b^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d 
*x]]) - (((-2*a*(a - b)*Sqrt[a + b]*(3*A*b^2 + 8*a^2*C - 5*b^2*C)*Cot[c + 
d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - 
b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a 
- b))])/(b*d) - (2*(a - b)*Sqrt[a + b]*(3*A*b^2 + (8*a^2 + 6*a*b + b^2)*C) 
*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + 
 b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d 
*x]))/(a - b))])/d)/(3*b) - (2*(a^2 - b^2)*C*Sqrt[a + b*Sec[c + d*x]]*Tan[ 
c + d*x])/(3*d))/(b^2*(a^2 - b^2))
 

3.8.43.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 

rule 4579
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(cs 
c[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*(A*b^2 + a^2* 
C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), 
 x] - Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f* 
x])^(m + 1)*Simp[b*(m + 1)*(a^2*C + A*b^2) - a*(A*b^2*(m + 2) + C*(a^2 + b^ 
2*(m + 1)))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
3.8.43.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3393\) vs. \(2(299)=598\).

Time = 15.59 (sec) , antiderivative size = 3394, normalized size of antiderivative = 10.38

method result size
parts \(\text {Expression too large to display}\) \(3394\)
default \(\text {Expression too large to display}\) \(3415\)

input
int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETUR 
NVERBOSE)
 
output
-2*A/d/b/(a+b)/(a-b)*(EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)) 
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1 
))^(1/2)*a^2*cos(d*x+c)^2+EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1 
/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+ 
c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b) 
)^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/( 
a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/( 
cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+c),(( 
a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x 
+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c 
),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos 
(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a 
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-c 
sc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)* 
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)+(cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(co 
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2+(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+...
 
3.8.43.5 Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algori 
thm="fricas")
 
output
integral((C*sec(d*x + c)^4 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b 
^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)
 
3.8.43.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a + b*sec(c + d*x))**(3/ 
2), x)
 
3.8.43.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algori 
thm="maxima")
 
output
Timed out
 
3.8.43.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algori 
thm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2) 
, x)
 
3.8.43.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)), x)